Фотосинтез – доклад сообщение

Фотосинтез кратко и понятно

Фотосинтез — это процесс синтеза органических веществ из неорганических за счет энергии света. В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты, содержащих зеленый пигмент хлорофилл.

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических. Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества — углекислый газ (CO2) и вода (H2O). Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода — из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений. Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C6H12O6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде. Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой, вторая — темновой. Такие названия обусловлены тем, что свет нужен только для световой фазы, темновая фаза независима от его наличия, но это не значит, что она идет в темноте. Световая фаза протекает на мембранах тилакоидов хлоропласта, темновая — в строме хлоропласта.

В световую фазу связывания CO2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в АТФ, использование энергии на восстановление НАДФ до НАДФ*H2. Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом. Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода. Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H2. Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO2 объединяются с водородом, высвобождаемым из молекул НАДФ*H2, и образуется глюкоза:

6CO2 + 6НАДФ*H2 →С6H12O6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания. На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода. Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO2. Такой ресинтез обеспечивается циклом Кальвина. Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Доклад на тему Фотосинтез 6 класс

Фотосинтез – сложное явление, которое чаще всего происходит в зелёных листьях растений. Этот процесс состоит из 2‑х этапов:

1. Световая фаза, которая требует наличие солнечного света;

2. Темновая фаза (свет не нужен).

Необходимыми компонентами для фотосинтеза, кроме света, являются углекислый газ и вода. Фотосинтез проходит в хлоропластах, зелёных пластидах, которые находятся в растительной клетке. Углекислый газ поглощается листьями из воздуха, а вода – из почвы корнями.

Как происходит фотосинтез?

В клетках растений содержится хлорофилл – пигмент, который отвечает за зелёный цвет листьев. Хлорофилл способен поглощать солнечный свет, который приводит в действие весь процесс фотосинтеза. Происходит расщепление воды, и образуются атомы водорода. Эти атомы расходуются на синтез углеводов. Выделение кислорода и синтез глюкозы происходят в темновую фазу.

Таким образом, растения способны сами производить продукты питания, глюкозу. Самое важное для растений – это свет и вода. При искусственном свете фотосинтез тоже может происходить, но в солнечном свете есть ультрафиолетовое излучение, создающее лучшие условия для данного процесса.

Некоторые бактерии и все зелёные водоросли также способны выделять кислород в процессе фотосинтеза. Мировой океан, как и леса, являются важным источником кислорода.

Существует ряд факторов, которые могут замедлять процесс фотосинтеза:

1. Недостаток солнечного света (растение становится слабее и насекомые уничтожают листву);

2. Недостаток воды (замедляются химические процессы).

Фотосинтез является очень важным процессом, потому что благодаря ему образуются органические вещества и выделяется кислород. Без фотосинтеза жизнь на нашей поанете невозможна.

Фотосинтез важен не только для окружающего мира, но и для самого растения. Глюкоза, выделенная в процессе фотосинтеза, является строительным материалом для растения. Благодаря глюкозе растения могут расти и развиваться.

Вариант №2

Абсолютно все живые организмы дышат, в том числе и растения. Без фотосинтеза они не смогли бы расти и развиваться. Для укрепления растениям необходимо достаточное получение воды, минеральных веществ и углекислого газа. Все эти компоненты они получают из самой природы. Также им требуется энергия, которая накапливается за счет солнечного света. Эта энергия усваивается для осуществления некоторых химических реакций, в процессе которых углекислый газ и вода преобразуются в глюкозу и кислород. Выполняется это во время питания и дыхания. Эти процессы и носят название фотосинтеза.

Слово фотосинтез имеет греческое происхождение. Образовалось оно от двух других слов- «фото» и «синтез». Дословно это переводится, как «вместе со светом». В ходе дыхания растений выполняется превращение солнечной энергии в химическую. В процессе взаимодействия углекислого газа, воды и энергии солнечного света осуществляется выделение глюкозы, кислорода и некоторого количества воды. Избыток глюкозы обычно накапливается в качестве крахмала во всех частях растений (корневищах, стебле и т.д.). Нужны эти запасы для осуществления различных естественных процессов.

Помимо самих растений, энергию солнечного света получают и животные, которые питаются зелеными.

Усваивание энергии солнечного света

Как было сказано выше, зеленые потребляют солнечную энергию, которая потом переходит в химическую. Но каким образом это совершается?

Этот процесс осуществляется при помощи хлоропластов. Это зеленые пластиды, содержащиеся в составе листьев. Эти клетки имеют краситель хлорофилл, который окрашивает растения в зеленый цвет и принимает участие в фотосинтезе.

Чем объясняется широкая и узкая структура листьев?

Фотосинтез осуществляется преимущественно в листьях растений. Именно из-за большой и широкой поверхности, они способны к наиболее лучшему и большему усваиванию солнечной энергии.

Какие еще факторы являются жизненно необходимыми для растений?

Для поддержания здоровья, дальнейшего совершенствования растениям нужны питательные вещества. Получают они их из почвы путем всасывания корнями воды, которая потом распределяется по всему растению. Если же почва бедна полезными веществами, то растение не сможет беспроблемно и полноценно совершенствоваться. Поэтому фермеры и садоводы постоянно следят за содержанием в земле полезных минеральных элементов. В критических ситуациях, когда почва обедняется, они прибегают к использованию удобрений.

Важность фотосинтеза

Фотосинтез является очень значимым химическим процессом. Для начала, он является важным составляющим в пищевой цепочке всего живого. Он обеспечивает растения продуктами питания, которые в дальнейшем являются пропитанием как для животного, так и человека. Также фотосинтез играет важную роль в выделении в среду кислорода, без которого не могут жить все живые организмы.

Фазы фотосинтеза

Фотосинтез состоит из 2 этапов: светового и темнового. Световая протекает только при участии света. В данном случае также принимает участие хлорофилл. При наступлении темноты начинается темновой период, в результате которой образуется глюкоза. Этот этап не требует присутствия света.

Таким образом, фотосинтез является очень значимым этапом в жизни всех организмов. Он осуществляет первостепенные процессы, без которых живые организмы не могли бы существовать.

Фотосинтез

Популярные темы сообщений

Исландия – это страна льдов и вулканов, расположенная на одноименном острове в северо-западной части Атлантического океана. Территориально относится к Северной Европе. Ближайшими соседями по морю являются остров Гренландия и Фарерские острова,

Природа запаслась большим запасом кактусов, которые смогли приспособиться выжить, казалось бы, в достаточно трудных климатических условиях. Человеку известно огромное количество самых разнообразных видов этого растения. Они могут жить долгие

Имя великого композитора Фредерика Шопена знает каждый. Он является ярким представителем романтизма в музыке. Творческие произведения Шопена оказали влияние на последующее развитие музыки, а также на его последователей.

Доклад на тему Фотосинтез сообщение 6 класс биология

Фотосинтез – это процесс, который представляет из себя трансформацию лучистой энергии солнца в химическую энергию. Таким образом природа приспособилась к использованию солнечной энергии для того чтобы жизнь на Земле цвела и развивалась.

Работу по трансформации солнечной энергии осуществляют самые различные фотосинтезирующие организмы, или же другими словами фотоавтотрофные. Они бывают как многоклеточными организмами, так и одноклеточными. К ним так же относятся прокариоты, которые являются самыми многочленными представителями фотоавтотрофных организмов.

Процесс фотосинтеза состоит из двух стадий. Первая называется «световая стадия» (или энергетическая). Данная стадия происходит внутри хлоропласта, на свету. Ее суть заключается в том, что происходит фотолиз воды и фосфорилирование. Другими словами энергия света преобразуется в химическую энергию АТФ, побочным эффектом от данной реакции является появление самого важного газа на Земле, кислорода. Вторая стадия фотосинтеза называется «темновая стадия» (или метаболическая). Данная стадия не может произойти без первой. Суть данной стадии заключается в том, что с помощью так называемых устьиц, которые располагаются на поверхности листа, растение способно поглощать из атмосферы СО2 (углекислый газ). В конечном итоге получаются такие вещества как глюкоза, крахмал и сахароза. Все эти компоненты накапливают энергию для растения, благодаря чему оно может расти и развиваться.

Читайте также:  Сердце человека - доклад сообщение 2, 3, 4 класс

Осуществить фотосинтез для растения задача не самая простая, ведь для того чтобы фотосинтез прошел успешно нужно огромное количество воздуха. Все из-за того, что на десять тысяч кубометров воздуха получается лишь три кубометра углекислоты, из которого образуется всего сто десять грамм глюкозы. Эти знания используют в агрономии, искусственно повышая в теплицах содержание углекислого газа до пяти процентов.

Значение фотосинтеза нельзя недооценивать. Именно фотосинтез позволяет жить человечеству на планете Земля, и не только ему, а всем живым существам.

Сообщение про Фотосинтез

На Земле живет множество живых существ — птицы, рыбы, различные насекомые, пресмыкающиеся, млекопитающие и другие, в том числе и человек. И почти все они дышат кислородом — газом, дающим жизнь живому и мертвому — вулканам и пожарам, газом, который потребляют все, выделяя непригодный для дыхания углекислый газ! Так откуда же он берется в атмосфере планеты?

На самом деле растения, обитающие на планете, как раз и строят себя из углекислого газа. Вернее, не самим газом, а углеродом, содержащимся в нем. Формула углекислого газа СО2, где С — углерод, идущий на питание растений, а О2 — две молекулы кислорода, выделяемые растением обратно в атмосферу. Получается, что все растения планеты не только потребляют кислород для собственного дыхания, но и производят его для всех.

Как это происходит?

В клетках зеленых частей растений содержатся особые органеллы — хлоропласты, именно они отвечают за фотосинтез. В них под воздействием света углерод из углекислого газа распадается на кислород, выделяющийся в атмосферу, и углеводы, остающиеся в растении в качестве строительного материала. Из них и состоит растение, в том числе и плоды, употребляемые в пищу. В темноте процесс фотосинтеза не происходит, наоборот, растение потребляет кислород, как и почти все живые существа, и не растет. Поэтому человек в малосолнечных регионах обеспечивает искусственное освещение культурным растениям, что позволяет получать хорошие урожаи. Кроме того, длительное нахождение в темном закрытом помещении с множеством растений может быть опасно.

Что обеспечивает фотосинтез?

Хлоропласты содержат специальный пигмент — хлорофилл, который впитывает в себя волны солнечного луча, отражая зеленую часть спектра, поэтому растения кажутся нам преимущественно зелеными. Именно с его участием под воздействием солнечного света неощутимый углекислый газ разлагается на кислород и твердый углерод, который под влиянием разных пигментов соединяется с другими газами и составляет углеводы и сахарА, из которых и состоит растение.

Интересно!

Кроме растений, фотосинтезом могут заниматься некоторые виды бактерий, так же, как и растения, питающиеся солнечным светом.

Некоторые животные, имеющие зеленую шерсть, тоже носят с собой хлорофилл, но он принадлежит бактериям, живущим внутри шерстинок.

Кроме хлорофилла, в фотосинтезе участвуют и другие пигменты, поэтому растения имеют разную окраску листвы. Цветы и плоды хлоропластов не имеют, а зеленый цвет вызван необходимостью маскировки незрелых плодов.

Картинка к сообщению Фотосинтез

Популярные сегодня темы

Гриб лисичка обыкновенная – употребляется в пищу человеком. Относится к семейству Лисичковые. Своё имя он получил от русского слова

Исследование космоса интересовало человечество на протяжении многих сотен лет. Освоение космоса – опасный труд, на который способен не каждый. Великими героями космоса можно назвать немногих.

Большая панда – это большое животное, которое в длину достигает от полутора до двух метров и вес этого пушистого животного может быть от семнадцати до ста шестидесяти килограмм.

Ухо является неотъемлемой и одной из главных частей нашего общего организма. С помощью уха мы воспринимаем, распознаём звуковые импульсы и понимаем все то, о чем нам говорит окружающий мир

Каждый человек имеет вредные привычки. Что же это такое? Вредными называют те привычки, которые мешают человеку нормально жить, становясь своеобразной навязчивой идеей.

Особенностью пчел является существование в составе единого общественного организма. Конечно, каждая пчела выглядит отдельной особью, но в действительности, представляет собой как бы самостоят

Доклад: Фотосинтез

Растения превращают солнечный свет в запасенную химическую энергию в два этапа: сначала они улавливают энергию солнечного света, а затем используют ее для связывания углерода с образованием органических молекул.

Зеленые растения — биологи называют их автотрофами — основа жизни на планете. С растений начинаются практически все пищевые цепи. Они превращают энергию, падающую на них в форме солнечного света, в энергию, запасенную в углеводах (см. Биологические молекулы), из которых важнее всего шестиуглеродный сахар глюкоза. Этот процесс преобразования энергии называется фотосинтезом. Другие живые организмы получают доступ к этой энергии, поедая растения. Так создается пищевая цепь, поддерживающая планетарную экосистему.

Кроме того, воздух, которым мы дышим, благодаря фотосинтезу насыщается кислородом. Суммарное уравнение фотосинтеза выглядит так:

вода + углекислый газ + свет —> углеводы + кислород

Растения поглощают углекислый газ, образовавшийся при дыхании, и выделяют кислород — продукт жизнедеятельности растений (см. Гликолиз и дыхание). К тому же, фотосинтез играет важнейшую роль в круговороте углерода в природе.

Кажется удивительным, что при всей важности фотосинтеза ученые так долго не приступали к его изучению. После эксперимента Ван-Гельмонта, поставленного в XVII веке, наступило затишье, и лишь в 1905 году английский физиолог растений Фредерик Блэкман (Frederick Blackman, 1866–1947) провел исследования и установил основные процессы фотосинтеза. Он показал, что фотосинтез начинается при слабом освещении, что скорость фотосинтеза возрастает с увеличением светового потока, но, начиная с определенного уровня, дальнейшее усиление освещения уже не приводит к повышению активности фотосинтеза. Блэкман показал, что повышение температуры при слабом освещении не влияет на скорость фотосинтеза, но при одновременном повышении температуры и освещения скорость фотосинтеза возрастает значительно больше, чем при одном лишь усилении освещения.

На основании этих экспериментов Блэкман заключил, что происходят два процесса: один из них в значительной степени зависит от уровня освещения, но не от температуры, тогда как второй сильно определяется температурой независимо от уровня света. Это озарение легло в основу современных представлений о фотосинтезе. Два процесса иногда называют «световой» и «темновой» реакцией, что не вполне корректно, поскольку оказалось, что, хотя реакции «темновой» фазы идут и в отсутствии света, для них необходимы продукты «световой» фазы.

Фотосинтез начинается с того, что излучаемые солнцем фотоны попадают в особые пигментные молекулы, находящиеся в листе, — молекулы хлорофилла. Хлорофилл содержится в клетках листа, в мембранах клеточных органелл хлоропластов (именно они придают листу зеленую окраску). Процесс улавливания энергии состоит из двух этапов и осуществляется в раздельных кластерах молекул — эти кластеры принято называть Фотосистемой I и Фотосистемой II. Номера кластеров отражают порядок, в котором эти процессы были открыты, и это одна из забавных научных странностей, поскольку в листе сначала происходят реакции в Фотосистеме II, и лишь затем — в Фотосистеме I.

Когда фотон сталкивается с 250-400 молекулами Фотосистемы II, энергия скачкообразно возрастает и передается на молекулу хлорофилла. В этот момент происходят две химические реакции: молекула хлорофилла теряет два электрона (которые принимает другая молекула, называемая акцептором электронов) и расщепляется молекула воды. Электроны двух атомов водорода, входивших в молекулу воды, возмещают два потерянных хлорофиллом электрона.

После этого высокоэнергетический («быстрый») электрон перекидывают друг другу, как горячую картофелину, собранные в цепочку молекулярные переносчики. При этом часть энергии идет на образование молекулы аденозинтрифосфата (АТФ), одного из основных переносчиков энергии в клетке (см. Биологические молекулы). Тем временем немного другая молекула хлорофилла Фотосистемы I поглощает энергию фотона и отдает электрон другой молекуле-акцептору. Этот электрон замещается в хлорофилле электроном, прибывшим по цепи переносчиков из Фотосистемы II. Энергия электрона из Фотосистемы I и ионы водорода, образовавшиеся ранее при расщеплении молекулы воды, идут на образование НАДФ-Н, другой молекулы-переносчика.

В результате процесса улавливания света энергия двух фотонов запасается в молекулах, используемых клеткой для осуществления реакций, и дополнительно образуется одна молекула кислорода. (Отмечу, что в результате еще одного, значительно менее эффективного процесса с участием одной лишь Фотосистемы I, также образуются молекулы АТФ.) После того как солнечная энергия поглощена и запасена, наступает очередь образования углеводов. Основной механизм синтеза углеводов в растениях был открыт Мелвином Калвином, проделавшим в 1940-е годы серию экспериментов, ставших уже классическими. Калвин и его сотрудники выращивали водоросль в присутствии углекислого газа, содержащего радиоактивный углерод-14. Им удалось установить химические реакции темновой фазы, прерывая фотосинтез на разных стадиях.

Цикл превращения солнечной энергии в углеводы — так называемый цикл Калвина — сходен с циклом Кребса (см. Гликолиз и дыхание): он тоже состоит из серии химических реакций, которые начинаются с соединения входящей молекулы с молекулой-«помощником» с последующей инициацией других химических реакций. Эти реакции приводят к образованию конечного продукта и одновременно воспроизводят молекулу-«помощника», и цикл начинается вновь. В цикле Калвина роль такой молекулы-«помощника» выполняет пятиуглеродный сахар рибулозодифосфат (РДФ). Цикл Калвина начинается с того, что молекулы углекислого газа соединяются с РДФ. За счет энергии солнечного света, запасенной в форме АТФ и НАДФ-H, сначала происходят химические реакции связывания углерода с образованием углеводов, а затем — реакции воссоздания рибулозодифосфата. На шести витках цикла шесть атомов углерода включаются в молекулы предшественников глюкозы и других углеводов. Этот цикл химических реакций будет продолжаться до тех пор, пока поступает энергия. Благодаря этому циклу энергия солнечного света становится доступной живым организмам.

В большинстве растений осуществляется описанный выше цикл Калвина, в котором углекислый газ, непосредственно участвуя в реакциях, связывается с рибулозодифосфатом. Эти растения называются C3-растениями, поскольку комплекс «углекислый газ—рибулозодифосфат» расщепляется на две молекулы меньшего размера, каждая из которых состоит из трех атомов углерода. У некоторых растений (например, у кукурузы и сахарного тростника, а также у многих тропических трав, включая ползучий сорняк) цикл осуществляется по-другому. Дело в том, что углекислый газ в норме проникает через отверстия в поверхности листа, называемые устьицами. При высоких температурах устьица закрываются, защищая растение от чрезмерной потери влаги. В C3-растения при закрытых устьицах прекращается и поступление углекислого газа, что приводит к замедлению фотосинтеза и изменению фотосинтетических реакций. В случае же кукурузы углекислый газ присоединяется к трехуглеродной молекуле на поверхности листа, затем переносится во внутренние участки листа, где углекислый газ высвобождается и начинается цикл Калвина. Благодаря этому довольно сложному процессу фотосинтез у кукурузы осуществляется даже в очень жаркую, сухую погоду. Растения, в которых происходит такой процесс, мы называем C4-растениями, поскольку углекислый газ в начале цикла транспортируется в составе четырехуглеродной молекулы. C3-растения — это в основном растения умеренного климата , а C4-растения в основном произрастают в тропиках.

Гипотеза Ван Ниля

Процесс фотосинтеза описывается следующей химической реакцией:

СО2 + Н2О + свет —> углевод + О2

В начале XX века считалось, что кислород, выделяющийся в процессе фотосинтеза, образуется в результате расщепления углекислого газа. Эту точку зрения опроверг в 1930-е годы Корнелис Бернардус Ван Ниль (Van Niel, 1897–1986), в то время аспирант Стэнфордского университета в штате Калифорния. Он занимался изучением пурпурной серобактерии (на фото), которая нуждается для осуществления фотосинтеза в сероводороде (H2S) и выделяет в качестве побочного продукта жизнедеятельности атомарную серу. Для таких бактерий уравнение фотосинтеза выглядит следующим образом: СО2 + Н2S + свет —> углевод + 2S.

Исходя из сходства этих двух процессов, Ван Ниль предположил, что при обычном фотосинтезе источником кислорода является не углекислый газ, а вода, поскольку у серобактерий, в метаболизме которых вместо кислорода участвует сера, фотосинтез возвращает эту серу, являющуюся побочным продуктом реакций фотосинтеза. Современное подробное объяснение фотосинтеза подтверждает эту догадку: первой стадией процесса фотосинтеза (осуществляемой в Фотосистеме II) является расщепление молекулы воды.

Melvin Calvin, 1911–97

Американский биолог. Родился в г. Сент-Пол, штат Миннесота, в семье выходцев из России. В 1931 году получил степень бакалавра в области химии в Мичиганском колледже горного дела и технологии, а в 1935 году — степень доктора химии в университете штата Миннесота. Двумя годами позже Калвин начал работать в Калифорнийском университете в Беркли и в 1948 году стал профессором; за год до этого был назначен директором отдела биоорганики в Радиационной лаборатории Лоренса в Беркли, где использовал технологические достижения военных исследований времен Второй мировой войны, например новые методы хроматографии, для изучения темновой фазы фотосинтеза. В 1961 году Калвин был удостоен Нобелевской премии в области химии.

Что такое фотосинтез? История открытия процесса, фазы фотосинтеза и его значение.

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Но еще 300-400 лет назад ответ на вопрос «откуда растения берут питательные вещества для строительства своих клеток?» занимал умы ученых во всем мире.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

После ван Гельмонта различные ученые повторили его опыт, и сложилась так называемая «водная теория питания растений».

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

Подробнее о «великой кислородной революции» можно прочитать в учебнике «Биология 10-11 классы» под редакцией А.А. Каменского на портале LECTA.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Слово фотосинтез состоит из двух частей: фото — «свет» и синтез — «соединение», «создание». Если подходить к определению упрощенно, то фотосинтез — это превращение энергии света в энергию сложных химических связей органических веществ при участии фотосинтетических пигментов. У зеленых растений фотосинтез происходит в хлоропластах.

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

У некоторых растений фотосинтез идет по упрощенному варианту, который называется «циклическое фосфорилирование» и разбирается этот процесс в учебнике «Биология 10-11 классы» под редакцией А. А. Каменского на портале LECTA.

Лекция № 12. Фотосинтез. Хемосинтез

Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

Радикалы •ОН объединяются, образуя воду и свободный кислород:

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н + заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ + (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

2Н + + 2е — + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза

Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3– и С4-фотосинтез.

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Фотодыхание:
1 — хлоропласт; 2 — пероксисома; 3 — митохондрия.

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать. Он поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

Название: Фотосинтез
Раздел: Рефераты по биологии
Тип: доклад Добавлен 02:30:06 06 октября 2005 Похожие работы
Просмотров: 24433 Комментариев: 95 Оценило: 122 человек Средний балл: 3.8 Оценка: 4 Скачать

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

Значение фотосинтеза

Купить проверочные работы
и тесты по биологии

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м 2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe 2+ → Fe 3+ ).

Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

Перейти к лекции №11 «Понятие об обмене веществ. Биосинтез белков»

Перейти к лекции №13 «Способы деления эукариотических клеток: митоз, мейоз, амитоз»

Смотреть оглавление (лекции №1-25)

Ссылка на основную публикацию